中国科学技术大学黄汉民教授团队原创性地提出了一种“自适应动态动力学拆分”(Adaptive DKR)新概念,实现了应用同一手性催化剂,在构建不同尺寸的环系过程中,产物手性中心的绝对构型随环尺寸“动态适应”性反转。这一颠覆传统认知的手性构建新概念为高效构建含多个立体中心的结构多样的氮杂多环化合物库提供了强大的合成方法学工具,并在应用于天然药物分子Martinellic acid全合成中取得显著突破(LLS短至9步、大于11%收率)。相关研究成果以“Adaptive dynamic kinetic resolution enables alteration of chiral induction with ring sizes”为题于6月23日发表在国际知名学术期刊《自然·化学》上。手性分子的精准构筑是现代合成化学的核心课题之一,尤其在药物研发中至关重要。新药开发研究表明,类似结构的手性杂环化合物中环元数或立体构型的微妙变化经常导致种子化合物药理活性、毒性及代谢特性等生物化学性质表现出显著差异。因此,对结构类似、包含不同尺寸环系及环上立体中心构型不同的分子家族进行的遍历研究在药物化学中十分
近日,中国科学技术大学物理学院张斗国教授课题组,在国际学术期刊《自然·通讯》上发表了题为“Large field-of-view plasmonic scattering imaging and sensing of nanoparticles with isotropic point-spread-function”的技术研究型论文。该研究依托微纳光学的光场调控技术,提出了一种基于一维光子晶体和贵金属薄膜的全方向表面等离激元照明器件。研究团队利用一维光子晶体的动量空间调控特性,精准调控照明光的透射角度,并利用这一特性来全方向激发贵金属薄膜负载的表面等离子体波。利用该全方向表面等离子体波做为近场照明光源,研究人员成功实现宽视场、高对比度以及高灵敏度的单颗粒探测成像。该单颗粒探测成像技术不需要复杂的光学系统对准,其结构紧凑,体积小易于集成化,可直接兼容到传统明场显微镜或便携式、集成化的成像系统上。该器件的提出使得表面等离子体散射光学显微镜摆脱了对高数值孔径油浸物镜或高折射率棱镜等体积庞大光学元件的依赖,将进一步推广表面等离子体散射光学成像技术在物理、材料以及大气科学等领域的应用。论文中,
中国科学技术大学自旋磁共振实验室林毅恒教授等人与理论合作者华中科技大学教授吕新友、四川大学特聘副研究员宾倩合作,在量子模拟方面取得重要进展。研究团队基于束缚离子体系,实验展示了量子拉比模型中宇称对称性保护的量子现象。该项研究揭示了对称性对量子系统的重要影响,同时也为基于对称性保护的量子器件提供了新的设计思路。该研究结果于5月16日以“Experimental Observation of Parity-Symmetry-Protected Phenomena in the Quantum Rabi Model with a Trapped Ion”为题,发表在《物理评论快报》上。对称性是物理学的核心概念之一,不仅构筑了诸多理论体系的基础,也在基础研究与实际应用之间架起桥梁。从氢原子光谱的精细结构解析,到量子相变、拓扑物态分类等前沿问题的研究,对称性始终贯穿于物理学发展的各个层面。作为描述光与物质相互作用的经典模型之一,量子拉比模型因其宇称对称性,使系统的动力学严格限制在守恒宇称的子空间中。该模型在量子光学、量子相变、临界动力学以及量子器件设计中具有广泛应用。尽管理论研究已预测宇称对称性
5月9日,中国科学技术大学潘建伟、张强、徐飞虎等人联合中国科学院西安光学精密机械研究所等国内外科研机构,首次提出并实验验证了主动光学强度干涉技术合成孔径技术,实现了对1.36公里外毫米级目标的高分辨成像。实验系统的成像分辨率较干涉仪中的单台望远镜提升约14倍。该成果以“Active Optical Intensity Interferometry”为题发表在国际学术期刊《物理评论快报》上,被选为编辑推荐论文(Editors’Suggestion),并被美国物理学会(APS)下属网站Physics所报道。传统成像技术的分辨率受到单个孔径衍射极限的制约。为突破这一物理极限,研究人员长期致力于发展各类合成孔径成像技术。例如,2019年事件视界望远镜(EHT)构建了一个地球尺度的合成孔径,在射电波段成功获得了M87星系中心黑洞的首张图像。这一开创性成果荣获了2020年基础物理学突破奖。然而,由于大气湍流引起的相位不稳定性,EHT所采用的基于振幅干涉的合成孔径技术很难直接应用于光学波段。早在20世纪50年代,英国科学家Hanbury Brown和Twiss(HBT)共同提出了强度干涉成像技术,并
中国科学技术大学雷久侯教授课题组联合美国麻省理工学院Haystack观象台张顺荣研究员,结合数值模拟与卫星观测,揭示了汤加火山喷发能量跨越大气多圈层传播并影响低轨道卫星高度的大气层的物理过程。相关成果以“Were Gravity Waves or Lamb Waves Responsible for the Large-Scale Thermospheric Response to the Tonga Eruption”为题于4月3日发表在国际知名期刊《AGU Advances》,并入选美国地球物理学会(AGU)会刊《Eos》亮点论文(Editors’Highlights)。图.2022年1月15日汤加火山喷发期间,GRACE-FO卫星探测的沿轨道中性大气密度(单位:10⁻¹² kg/m³)及HIAMCM模拟的大气温度变化(单位:K)。2022年1月15日,南太平洋汤加海底火山剧烈喷发,其喷发羽流高度超过57公里,成为卫星观测时代以来最强火山活动之一。这场“世纪喷发”不仅在地表引发了地震、海啸以及对流层大气扰动,更在数小时内波及高达500公里的卫星轨道高度大气层。研究团队利用GRACE
中国科学技术大学生命科学与医学部周丛照教授课题组利用冷冻电镜单颗粒技术解析特异性侵染模式鱼腥藻的淡水短尾噬藻体A4的完整三维结构,揭示其衣壳的双层加固机制以及衣壳内部关键侵染元件前注射体的原位组装模式,首次阐明病毒基因组在前注射体上的包装模式,相关研究成果以“Cryo-EM structure of cyanopodophage A4 reveals a pentameric pre-ejectosome in the double-stabilized capsid”为题于3月31日在线发表在《美国国家科学院院刊》上。蓝藻是淡水生态系统中重要的光合微生物,但其过度增殖将导致水体富营养化,并引发蓝藻水华。噬藻体作为蓝藻的天然“捕食者”,可裂解宿主并调控蓝藻的种群平衡,在水环境保护过程中发挥着重要作用。鱼腥藻PCC 7120是研究淡水蓝藻生理与遗传的模式生物,可被短尾噬藻体A4特异性侵染。短尾噬藻体由于尾长受限,侵染时需要由衣壳内的前注射体(pre-ejectosome)在宿主细胞膜间重构跨膜通道,以辅助病毒完成基因组注射。前注射体通常由多个蛋白高度压缩形成,但对其原位构象的研究十分有限
安徽省合肥市金寨路96号(中国科学技术大学东校区老图书馆378)
0551-63602196
ustcsee@ustc.edu.cn
Copyright © 2024 中国科学技术大学卓越工程师学院 All Rights Reserved | 皖ICP备05002528号